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COMBINATORIAL METHODS IN DEHN SURGERY

C. McA. Gordon

Abstract. This is an expository paper, in which we give a summary of some of

the joint work of John Luecke and the author on Dehn surgery. We consider the
situation where we have two Dehn fillings M(α) and M(β) on a given 3-manifold

M , each containing a surface that is either essential or a Heegaard surface. We show
how a combinatorial analysis of the graphs of intersection of the two corresponding

punctured surfaces in M enables one to find faces of these graphs which give useful

topological information about M(α) and M(β), and hence, in certain cases, good
upper bounds on the intersection number ∆(α, β) of the two filling slopes.

1. Introduction

This expository paper is an expanded version of part of the author’s lectures at
the Workshop. The remaining part of the lectures covered material that is discussed
in Sections 2 and 3 of the survey article [Go].

Here, we give an introductory account of the combinatorial methods developed
by John Luecke and the author (mainly in the proof of the Knot Complement
Conjecture [GL2]) for studying various questions about Dehn surgery. For more
details, see [GL2], [GL3] and [GL4].

The setting is that we have two Dehn fillings M(α), M(β) on a 3-manifold M ,

which contain surfaces P̂ , Q̂ respectively, and the main goal is to obtain sharp upper

bounds on the intersection number of α and β, under certain hypotheses on P̂ and

Q̂.

In Section 2 we describe how P̂ and Q̂ give rise to labelled intersection graphs

GP ⊂ P̂ , GQ ⊂ Q̂. The idea of using such graphs in the context of Dehn surgery is
due to Litherland [L].

In Section 3 we introduce the algebraic notion of a type, which plays a key role
in the theory.

In Section 4 we show how certain faces or collections of faces of GP give topo-

logical information about M(β) (and/or Q̂), and of course similarly for GQ.
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2 C. MCA. GORDON

Section 5 contains the main combinatorial assertion, Theorem 5.1, which says
that, if GP and GQ are graphs as in Section 2, then either GP represents all types

or GQ contains a configuration we call a (p − χ(P̂ ))-web.

Finally, Section 6 contains some applications, mainly to Dehn surgery on knots
in S3, although we also say something about the case where M(α) and M(β) are
reducible.

We have tried to keep the discussion as general as possible, allowing P̂ and Q̂
to have arbitrary genus until the last part of Section 5. It must be admitted that
this generality is somewhat bogus, inasmuch as in all the applications in Section 6,

Q̂ is a 2-sphere and P̂ is either a 2-sphere or a torus. (For statements which apply

to surfaces of arbitrary genus see [T] and [R].) The main point is that if Q̂ is a

2-sphere then, if GQ contains a (p − χ(P̂ ))-web, it contains one that is innermost
in the obvious sense, and in such a great web one can find useful faces, namely
Scharlemann cycles. Nevertheless, we hope that presenting the material in this
way clarifies the logical structure of the argument.

2. Graphs of surface intersections

Let M be a compact, orientable, irreducible 3-manifold with torus boundary.
Let α be a slope, that is, the isotopy class of an essential embedded circle, on ∂M .
Then the result of α-Dehn filling on M is the manifold M(α) = M ∪ Vα, where
Vα is a solid torus, glued to M via a homeomorphism ∂M → ∂Vα taking α to the
boundary of a meridian disk of Vα.

If α and β are two slopes on ∂M , then ∆(α, β) will denote the minimal geometric
intersection number of α and β.

One finds in practice that statements of the following form tend to hold, and
this is the main type of result that we shall be seeking:

if M(α) and M(β) have certain special properties, then ∆(α, β) is bounded
above by some ∆0.

The bound ∆0 will depend on the properties in question. The situation in which
we are particularly interested, and to which our methods apply, is when M(α) and
M(β) contain certain kinds of surfaces.

So suppose that P̂ , Q̂ are (closed, orientable) surfaces in M(α), M(β) respec-

tively. We may assume that P̂ meets Vα in a finite collection of meridian disks, so

that P = P̂ ∩ M is a surface in M each of whose boundary components has slope

α. Similarly, Q̂ gives rise to a surface Q in M whose boundary components have
slope β.

For our machinery to be applicable, it is important that ∂P and ∂Q be non-
empty. So, we may state our basic assumption as follows:

(A1) there are properly embedded surfaces (P, ∂P ), (Q, ∂Q) ⊂ (M, ∂M) such that
∂P and ∂Q are non-empty, and each component of ∂P (resp. ∂Q) has slope
α (resp. β).
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By an isotopy of (say) P we may assume in addition that

(A2) P and Q intersect transversely, and each component of ∂P meets each com-
ponent of ∂Q in exactly ∆(α, β) points.

It is clear, however, that for any α and β we can always find surfaces P and
Q, of arbitrary genus, satisfying (A1) and (A2), and therefore we must impose
some additional conditions if we are to extract any non-trivial information from
this situation. The technical assumption which enables us to do this is:

(A3) each arc component of P ∩ Q is essential in P and in Q.

By (A2), P∩Q consists of a finite disjoint union of circles and properly embedded
arcs, the endpoints of the arcs being the points of intersection of ∂P with ∂Q.
Condition (A3) says that for no arc component γ of P ∩Q is there an arc δ ⊂ ∂P ,
with ∂γ = ∂δ, and a disk D ⊂ P such that ∂D = γ ∪ δ (and similarly for Q).

We now describe some conditions under which (A3) holds.

Recall that a closed orientable surface S in a 3-manifold N is essential if either
S has positive genus, is incompressible in N , and is not parallel to a component of
∂N , or S is a 2-sphere which does not bound a 3-ball in N .

First suppose

(a) P̂ is essential in M(α) and M contains no essential surface homeomorphic

to P̂ .

Let Kα ⊂ M(α) denote the core of the solid torus Vα. We choose P̂ (among

all essential surfaces in M(α) homeomorphic to P̂ ) so that p = |∂P | = |P̂ ∩ Kα|
is minimal. Then p > 0 by hypothesis. Also, standard arguments show that P is
incompressible and boundary incompressible in M . In particular, we may assume
that no circle component of P ∩ Q bounds a disk in Q.

If Q̂ also satisfies (a) (with M(α) replaced by M(β)), and is chosen to minimize

q = |∂Q| = |Q̂ ∩ Kβ |, then, again by standard arguments, we may assume that
condition (A3) holds.

Another case of interest is

(b) P̂ is a Heegaard surface for M(α) and Kα cannot be isotoped to lie on P̂ .

If P̂ satisfies (a) and Q̂ satisfies (b) (for M(β)), then Gabai [Ga2] shows that

(A3) can be achieved if Kβ is put in thin position with respect to Q̂. (Gabai

explicitly treats the case when M(β) ∼= S3 and Q̂ ∼= S2, but his argument carries

over verbatim to any Heegaard surface Q̂.)

Finally, if P̂ and Q̂ both satisfy (b) (for M(α) and M(β) respectively), then
Rieck has shown [R], using thin position, that again (A3) can be assumed to hold.

(The case M(α) ∼= M(β) ∼= S3, P̂ , Q̂ ∼= S2 is done in [GL2], and was also proved
independently by Gabai (unpublished).)

Given surfaces P, Q in M satisfying (A1), (A2) and (A3), we focus on the arc
components of P ∩ Q, as they lie in P and in Q. We regard these arcs as defining

graphs GP and GQ in P̂ and Q̂ respectively, in the obvious way. Thus the (fat)
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vertices of GP are the disks P̂ − int P , the edges of GP are the arc components of
P ∩ Q as they lie in P , and similarly for GQ.

We now encode some additional structure, as follows. Number the components
of ∂P 1, 2, . . . , p in the order in which they appear on ∂M , and similarly number
the components of ∂Q 1, 2, . . . , q. This gives a corresponding numbering of the
vertices of GP and GQ. Consider an arc component of P ∩ Q. Its endpoints are
points of ∂P ∩ ∂Q, the intersections of (say) the ith component of ∂P with the
jth component of ∂Q, and the i′th component of ∂P with the j′th component of
∂Q. We then label the endpoints of the corresponding edge of GP with j and j′ at
vertices i and i′ respectively, and similarly for GQ. See Figure 1.

i i 
j j 

j j 
i i 

GP GQ 

Figure 1

We next give a sign, + or −, to each vertex of GP , according to the direction
on ∂M of the orientation of the corresponding component of ∂P , induced by some
chosen orientation of P . Equivalently, this is the sign of the corresponding inter-

section point of Kα with P̂ (with respect to some chosen orientations of M, P̂ and

Kα). In particular, if P̂ separates M(α) then the signs of the vertices 1, 2, . . . , p
of GP alternate. Similarly, we give a sign to each vertex of GQ. Note that around
each vertex of GP the edge-endpoint labels occur in order 1, 2, . . . , q, 1, 2, . . . , q, . . . ,
repeated ∆ = ∆(α, β) times, the ordering being (say) anticlockwise at a positive
vertex and clockwise at a negative vertex. See Figure 2. Similarly, around each
vertex of GQ we see the labels 1, 2, . . . , p, 1, 2, . . . , p, . . . , repeated ∆ times.

q 

q 

1 

2 

2 1 

+ 
q 

q 

1 

2 

2 1 

- 

repeated  ∆  times 

Figure 2

Since M, P and Q are orientable, an arc component of P ∩ Q joins points of
intersection of ∂P with ∂Q of opposite sign. Hence we have the parity rule: if an
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edge of GP joins vertices i and i′ and the corresponding edge of GQ joins vertices j
and j′, then i and i′ have the same sign if and only if j and j′ have opposite signs.
(See Figure 1.)

Condition (A3) becomes, in graph-theoretic language, the condition that GP and
GQ contain no trivial loops.

We will denote by q the set of (edge-endpoint) labels {1, 2, . . . , q} of GP . We
also have the associated q-intervals (1, 2), (2, 3), . . . , (q − 1, q), (q, 1).

D 

3 
4 

4 
3 

5 
6 

1 
2 

2 1 

+ + 

+ 

- - 

Figure 3

Note that if D is a disk face of GP , then ∂D consists of an alternating sequence of
edges and corners, where the edges are edges of GP (i.e., arc components of P ∩Q),
and the corners are q-intervals (i, i + 1) (i.e., arcs in ∂P between consecutively
labelled components i, i + 1 of ∂Q. See Figure 3.

Similar remarks apply to GQ.
We may describe the philosophy behind our approach as consisting of two parts:

Combinatorial: use the one-one correspondence between the edges of the labeled
graphs GP and GQ to show that either GP contains certain configurations or GQ

contains certain (perhaps other) configurations.

Topological: use the existence of certain collections of faces of GP (resp. GQ) to

get topological information about the pair (M(β), Q̂) (resp. (M(α), P̂ )).
These will be elaborated in Sections 5 and 4 respectively.

Remark. For simplicity we have assumed that ∂M is a torus, but everything carries
over without much change if we allow M to have additional boundary components
(with α and β being slopes on some fixed torus component of ∂M). In this more

general setting, we may also allow P̂ and/or Q̂ to have non-empty boundary.

3. Types

We now introduce a purely algebraic concept, that of a type, which plays an
important role in the theory under discussion. The reader may choose to skip to
Section 4 and return to the present section when necessary.
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Let q be a positive integer. A q-type is a q-tuple (ε1, ε2, . . . , εq), where εi = ±,
1 ≤ i ≤ q.

We say that a = (a1, a2, . . . , aq) ∈ Zq represents the q-type τ = (ε1, ε2, . . . , εq)
if and only if

(1) for some η = ±, sign ai = ηεi for each i such that ai 6= 0; and

(2)
q∑

i=1
|ai| ≥ 2.

Condition (2) merely excludes the zero vector, together with vectors all of whose
co-ordinates are zero except one, which is ±1.

Note that a represents τ if and only if it represents −τ . Also, there are 2q−1

q-types up to sign, including the trivial type, which by definition has ε1 = ε2 =
· · · = εq .

Example. There are 22 = 4 3-types (up to sign): +++, −++, +−+, and ++−.
(1, 0,−2) represents − + + and + + −.

A set A ⊂ Zq represents all q-types if and only if, for each q-type τ , there exists
a ∈ A such that a represents τ .

Examples.

(1) If |k| ≥ 2, then {(0, . . . , 0, k, 0, . . . , 0)} represents all q-types.
(2) {(1, 0, 1), (−1, 1, 0), (1, 1,−1)} represents all 3-types.
(3) If 1 ≤ r ≤ q, then A ⊂ Zq represents all q-types if and only if

{(a1, . . . , ar, 0, ar+1, . . . , aq) : (a1, . . . , aq) ∈ A} represents all (q+1)-types.

For A ⊂ Zq, let c(A) be the number of co-ordinates 1 ≤ i ≤ q such that ai 6= 0
for some a ∈ A. Then we may regard A ⊂ Zc(A) ⊂ Zq in the obvious way. By (3)
above, A represents all c(A)-types if and only if it represents all q-types. Thus we
may use the phrase A represents all types without ambiguity.

The key property of types is the following “all types implies torsion” theorem
due to Parry [P].

Theorem 3.1 (Parry). If A ⊂ Zq represents all types then there exists A0 ⊂ A
such that Zq modulo the subgroup generated by A0 has non-trivial torsion.

We remark that it is not true that A0 can be chosen to represent all types; equiv-
alently, it is not true that if A ⊂ Zq is a minimal set of representatives of all types
then Zq/(A) has non-trivial torsion. (Here, minimal means that no proper subset of
A represents all types.) For example, A = {(1, 2, 1), (−1, 1, 1), (1,−1, 2), (1, 1,−1)}
is clearly a minimal set of representatives of all types, but Z3/(A) = 0.

A useful fact, proved in [GL4, Lemma 4.4], is that if A ⊂ Zq represents all types
then either A contains a basis for Rq or there exists A1 ⊂ A such that c(A1) < q
and A1 represents all types. As an immediate consequence we have

Lemma 3.2. If A is a minimal set of representatives of all types then A contains
a basis for Rc(A).
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4. The topology

Consider the solid torus Vβ ⊂ M(β). The surface Q̂ meets Vβ in q meridian
disks, cutting Vβ into q 3-balls. For each q-interval λ = (i, i+1), let Hλ denote the
3-ball (1-handle) consisting of that part of Vβ between the meridian disks whose
boundaries are components i and i + 1 of ∂Q.

Let D be a disk face of GP . Then D ⊂ M ⊂ M(β), where the edges of ∂D
are arcs in Q, and the corners (i, i + 1) of ∂D are arcs in ∂P running along the
corresponding 1-handle H(i,i+1). See Figure 4, which shows ∂D for the face D
illustrated in Figure 3.

1 2 3 4 5 6 

Q 

Figure 4

Let D be a set of disk faces of GP . Let c(D) be the set of q-intervals λ = (i, i+1)
that occur as corners of faces in D. Let e(D) be the set of edges of GQ corresponding
to edges belonging to faces in D.

Suppose that the edges e(D) are contained in a disk E ⊂ Q̂. (Note that this

will necessarily be the case if Q̂ is a 2-sphere.) We take E to also contain the fat
vertices of GQ at the endpoints of the edges in e(D).

Recall that if Q̂ is an essential surface, then we may assume that no circle

component of P ∩Q bounds a disk in Q. Hence (int D)∩ Q̂ = ∅. If Q̂ is a Heegaard
surface, this need not hold. Assume for the moment, however, that (int D)∩E = ∅;
we shall see later (at the end of the present section) that in the cases of interest
this can be achieved after some disk exchanges on int D.

Define a 3-manifold N(E,D) ⊂ M(β) by

N(E,D) = nhd

(
E ∪

⋃

λ∈c(D)

Hλ ∪ D

)
.

Note that N(E,D) has a natural handle decomposition, with a single 0-handle
(corresponding to E), the 1-handles Hλ, and 2-handles whose cores are the elements
of D. Also, if W denotes the handlebody nhd(E ∪

⋃
λ∈c(D) Hλ), then we can read
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off the element of π1(W ) (and hence of H1(W )) represented by the boundary of a
disk D ∈ D by reading the sequence of corners of D (with sign, given by the sign
of the corresponding vertex of GP ) as we go around ∂D in some direction.

The idea is to find D such that N(E,D), or perhaps the surface ∂N(E,D), gives

topological information about M(β), or the surface Q̂, possibly a contradiction.
The simplest example of this philosophy is when D consists of a single face of

GP which is a Scharlemann cycle. This is a disk face D of GP such that all the
vertices of D have the same sign, and all the corners of D are the same q-interval
λ = (i, i + 1). See Figure 5. Scharlemann cycles first appeared (in a slightly
different context) in [S1]. The following theorem, which is contained in [S2, Proof
of Proposition 5.6], is immediate; see Figure 6. (Note that vertices i and i + 1 of
GQ are of opposite sign, by the parity rule.)

i 

+ 

+ 

+ 

i+1 

i+1 
i i+1 

i 

Figure 5

Theorem 4.1. Let D be a Scharlemann cycle in GP , such that the edges e(D) lie

in a disk E ⊂ Q̂. Then N(E, D) is a punctured lens space.

Note that π1(N(E, D)) ∼= Zk, where k is the length of D, i.e., the number of
edges in ∂D.

H(i,i+1) 

i +1 i 

E 

Figure 6

Let us examine the implications for (M(β), Q̂) of the existence of a Scharlemann
cycle in GP as in Theorem 4.1.

(Sa) If Q̂ is a Heegaard surface, we conclude tht M(β) has a lens space summand.
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Now suppose that Q̂ is an essential surface. Note that (after a small iso-

topy of N(E, D)) we may assume that ∂N(E, D) ∩ Q̂ = E. Let E′ be the disk

∂N(E, D)− E, and let Q̂′ = (Q̂−E)∪E′. Then Q̂′ ∼= Q̂. Also, |Q̂′ ∩Kβ| = q − 2,

since the two points of intersection of Kβ with Q̂ corresponding to the labels i and
i + 1 that appear in the corners of the Scharlemann cycle D, have been eliminated.

We therefore have the following.

(Sb) If Q̂ is an incompressible surface of positive genus, then Q̂′ is also incom-
pressible. But this is a contradiction, because of the minimality of q.

(Sc) If Q̂ is an essential 2-sphere, then M(β) has a lens space summand. In fact,

by the minimality of q, Q̂ decomposes M(β) as M ′# (lens space).
(Sd) For a variant of (Sc), let us say that a 2-sphere S in a 3-manifold N is

Q-essential if S does not bound a Q-homology ball in N . (In particular,

this is the case if S is non-separating.) It is clear that if Q̂ is Q-essential in

M(β), then so is Q̂′. Therefore, if we choose Q̂ so that q is minimal over all
Q-essential 2-spheres in M(β), then the existence of a Scharlemann cycle in
GP is a contradiction.

Although Scharlemann cycles are very useful, their existence is not guaranteed
in all situations of interest. A more global concept, which gives similar topological
conclusions, is that a set of faces representing all types.

A q-type is a q-type τ = (ε1, ε2, . . . , εq) (see Section 3), where the ith co-ordinate
of τ is formally associated with the ith q-interval (i, i + 1).

Let D be a disk face of GP . By taking the algebraic sum of the corners of D we
get an element [D] ∈ Zq, the free abelian group on the set q-intervals.

We say that D represents the q-type τ if and only if

(1) [D] represents τ (in the sense of Section 3); and
(2) (coherence condition) no q-interval (i, i+1) appears as a corner of D at two

vertices of opposite sign.

As an example, the disk D shown in Figure 3 fails to satisfy the coherence
condition.

A set of (disk) faces D of GP represents all types if and only if for each q-type
τ there exists D ∈ D such that D represents τ . If such a set of faces exists we say
that GP represents all types.

Remark. The role of the coherence condition (2) is twofold. First, it ensures that
condition (2) in the algebraic definition of representing a type (see Section 3) is
automatically satisfied (since GP has no trivial loops). Second, it makes it possible
to search for representatives of types in a more organized fashion, as we shall see
in Section 5 (cf. Proposition 5.2).

If D is a face of GP such that small neighborhoods in D of the edges e(D) all

lie on the same side of Q̂, we say that D lies locally on that side of Q̂. To get the
topological conclusions that we want from a set of representatives of all types, we
first need to observe the following (cf. [GL2, Proof of Proposition 3.2, part (A)]).
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Lemma 4.2. Let D be a set of faces of GP representing all types. Then there
exists D′ ⊂ D such that D′ represents all types and the elements of D′ all lie locally

on the same side of Q̂.

Proof. Label the two local sides of Q̂ in M(β), B and W (black and white).
Let λ = (i, i + 1) be a q-interval, and recall the definition of the 1-handle Hλ at

the beginning of this section. Orient (the core of) Hλ from the end corresponding
to component i of ∂Q to the end corresponding to component i + 1 of ∂Q. Then
we have the partition

{q-intervals} = B
∐

W
∐

BW
∐

WB ,

where

λ ∈





B
W
BW
WB





if Hλ runs from





B to B
W to W
B to W
W to B





.

Suppose the conclusion of the lemma is false. Then, if B 6= ∅, there exists a
B-type τB such that no member of D represents τB . Similarly, if W 6= ∅, there
exists a W-type τW such that no member of D represents τW . Define a q-type τ
by

τ |B = τB , if B 6= ∅ ; τ |W = τW , if W 6= ∅ ;

τ |λ = + , ∀ λ ∈ BW ; τ |λ = − , ∀ λ ∈ WB .

By hypothesis, there exists D ∈ D such that D represents τ . Note that, for some
orientation of ∂D, every corner of D in BW

∐
WB runs from B to W , and hence

D can contain no such corner. Therefore either all corners of D belong to B, or all
corners belong to W. It follows that either B 6= ∅ and D represents τB , or W 6= ∅
and D represents τW , contradicting the definitions of τB and τW . �

Theorem 4.3. Let D be a set of faces of GP representing all types, such that the

edges e(D) lie in a disk E ⊂ Q̂. Then there exists D′ ⊂ D such that the elements of

D′ all lie locally on the same side of Q̂, H1(N(E,D′)) is finite and non-zero, and
∂N(E,D′) ∼= S2.

Proof. (cf. [GL4, proof of Proposition 4.5]). We may assume that D is minimal.

Hence, by Lemma 4.2, the elements of D all lie locally on the same side of Q̂. Also,
by Lemma 3.2, there exists D′ ⊂ D such that {[D] : D ∈ D′} is a basis for Rc(D).
Let N ′ = N(E,D′). Then it follows that H1(N

′) is finite and ∂N ′ ∼= S2.
It remains to show that H1(N

′) 6= 0.
Let N = N(E,D) = nhd(N ′ ∪ (D − D′)). Since ∂N ′ ∼= S2, attaching to N ′ the

2-handles whose cores are the elements of D−D′ is equivalent to removing from N ′

an equal number of open 3-balls. By Theorem 3.1 there exists D0 ⊂ D such that
H1(N0) has non-trivial torsion, where N0 = N(E,D0). Note that N0 ⊂ N ⊂ N ′.
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Suppose H1(N
′) = 0. Then N ′ is a homology 3-ball, and the Mayer-Vietoris exact

sequence gives H1(∂N0) ∼= H1(N0) ⊕ H1(N
′ − N0), contradicting the fact that

H1(N0) has non-trivial torsion. Hence H1(N
′) 6= 0, as desired. �

Remark. Since H1(N) ∼= H1(N
′), the above proof shows that if D is a minimal

set of representatives of all types then H1(N(E,D)) is finite and non-zero. As was
noted in Section 3, the analogous statement is not true in the purely algebraic
setting.

It follows from Theorem 4.3 that if GP represents all types, and the edges of the

relevant faces are contained in a disk in Q̂, then we get conclusions almost identical
to (Sa), (Sb), (Sc) and (Sd) above for Scharlemann cycles.

(Ta) If Q̂ is a Heegaard surface, then M(β) has a summand N̂ ′ with H1(N̂
′)

finite and non-zero.
(Tb) If Q̂ is an incompressible surface of positive genus, this is a contradiction.

(We get a new surface Q̂′, obtained from Q̂ by a disk exchange, with |Q̂′ ∩
Kβ| = q − |c(D)|.)

(Tc) If Q̂ is an essential 2-sphere, then Q̂ decomposes M(β) as M ′ # N̂ ′, where

H1(N̂
′) is finite and non-zero.

(Td) If Q̂ is a Q-essential 2-sphere, this is a contradiction.

Finally, we return to the assumption, when Q̂, is a Heegaard surface, that
(int D) ∩ E = ∅.

Let D be a collection of faces of GP representing all types (this includes the case
where D consists of a single Scharlemann cycle). We may assume that (int D) ∩E
consists of a finite number of disjoint circles and arcs, properly embedded in E. Let
γ be such a circle or arc, and let E1 and E2 be the components of E − γ. There is
a corresponding partition

c(D) = C1

∐
C2

∐
C12 ,

where λ ∈ Ci if the 1-handle Hλ has both ends in Ei, i = 1, 2, and λ ∈ C12 if Hλ

has one end in E1 and one in E2.
Then, exactly as in the proof of Lemma 4.2 (the c(D)-type τ here will be defined

by orienting all λ ∈ C12 so as to run from (say) E1 to E2), there exists D′ ⊂ D such
that D′ represents all types and c(D′) ⊂ C1 (say). Since we may assume that D is
a minimal set of representatives of all types, we conclude that the vertices of GQ

corresponding to the labels that appear in the corners c(D) all lie in E1.
If γ is an arc, or if γ is a circle and Ē1 is a disk, we replace E by Ē1 (moved

slightly so as to eliminate the intersection γ with int D). If γ is a circle and Ē2

is a disk, we use a standard innermost circle argument to cut-and-paste D, using
subdisks of Ē2, so as to reduce (int D) ∩ E. Thus we eventually get a collection of

disks D̃, whose boundaries are the same as those in D, such that (int D̃) ∩ E = ∅.

Remark. There are situations when it is useful to consider submanifolds of M(β)

of the form nhd(E∪
⋃

Hλ ∪D) where E is a subsurface of Q̂ other than a disk. For
example, the case where D consists of a Scharlemann cycle and E is an annulus
arises in [GL3, Section 3].
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5. The combinatorics

To state the main result of this section, Theorem 5.1 below, we need the following
definition.

A subgraph Λ of GQ is a k-web (k a non-negative integer) if and only if

(1) all the vertices of Λ have the same sign, and
(2) at most k edge-endpoints of GQ at vertices of Λ are not endpoints of edges

of Λ.

See Figure 7 for an example.

A  k-web   (p = 6,  ∆ = 1,  k = 4)  

+ + 

+ + 

1 
2 
3 

4 5 
6 

1 2 
3 

4 5 

6 

1 2 3 
4 

5 6 

1 
2 3 4 

5 6 

Figure 7

In the following theorem, GP and GQ are graphs as in Section 2.

Theorem 5.1. Assume that ∆ > 1−χ(P̂ )/p. Then either GP represents all types

or GQ contains a (p − χ(P̂ ))-web.

Most of the remainder of this section will be devoted to a sketch of the proof of
Theorem 5.1.

First we deal with the case of the trivial type, which is different from the general
case.

Define Λ to be the subgraph of GQ consisting of all edges of GQ joining vertices

of the same sign. If some component of Λ is not a (p−χ(P̂ ))-web, then GQ contains

more than (p−χ(P̂ )) edges joining vertices of opposite sign. By the parity rule, the
corresponding edges of GP join vertices of the same sign. Let Σ be the subgraph
of GP consisting of all vertices of GP , and all edges of GP joining vertices of the
same sign. Then

χ(P̂ ) = V − E +
∑

χ(f) (summed over all faces f of Σ )

< p − (p − χ(P̂ )) +
∑

χ(f) .
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Hence
∑

χ(f) > 0, implying that Σ has a disk face. This face is then a face of GP

whose vertices all have the same sign, and which therefore represents the trivial
q-type.

For non-trivial q-types we proceed as follows.

Define a graph Γ ⊂ P̂ by:
• the vertices of Γ consist of the fat vertices (i.e., the vertices of GP ), together

with dual vertices v(D), one in the interior of each face D of GP ;
• the edges of Γ join each dual vertex v(D) to the fat vertices in the boundary

of the corresponding face D.
See Figure 8.

● 

● 

● ● 

Figure 8

Now let τ be a q-type. We define the directed graph Γ(τ) ⊂ P̂ to be the graph
Γ, with edges oriented according to the following rule. Let e be an edge of Γ, with
one endpoint at the fat vertex v, lying in a q-interval (i, i+1) at that vertex. Then
we orient e

inwards at v if (τ |(i, i + 1)) · sign v = +, and
outwards at v if (τ |(i, i + 1)) · sign v = −.

As an example, if q = 6 and τ = + − + − −−, then around the vertices of GP

the edges of Γ(τ) are oriented as shown in Figure 9.
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6 

Figure 9

The reason for defining the orientation on the edges of Γ(τ) in this way is the
following, which is immediate from the definition.
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Proposition 5.2. A disk face D of GP represents τ if and only if the corresponding
dual vertex v(D) is a sink or source of Γ(τ).

Our search for representatives of types is thus translated into the study of the

directed graphs Γ(τ) ⊂ P̂ . Here we will use the following very elegant combinatorial
formulation of the Poincaré-Hopf Index Theorem, due to Glass [Gl].

Consider any directed graph Ω in a closed surface S. For each vertex v of Ω,
let s(v) be the number of switches (i.e., changes in orientation of successive edges)
around v, and for each face f of Ω, let s(f) be the number of switches around ∂f .
See Figure 10.

● 

● ● 

● 

● 

● 

● 

● 
s(v) = 4 s(f) = 4  

Figure 10

Define the index of a vertex or face by

I(v) = 1 −
s(v)

2
, I(f) = χ(f) −

s(f)

2
.

In particular, a vertex of positive index is a sink or source (I(v) = 1), and a face of
positive index is a disk whose boundary is a cycle (I(f) = 1).

Lemma 5.3. (Glass). Let Ω be a directed graph in the closed surface S. Then∑
I(v) +

∑
I(f) = χ(S).

Proof. (See [Gl].) Each corner between adjacent edges at a vertex contributes
exactly 1 to

∑
s(v) +

∑
s(f). Hence

χ(S) = V − E +
∑

χ(f)

= V −
# corners

2
+

∑
χ(f)

= V −
(
∑

s(v) +
∑

s(f))

2
+

∑
χ(f)

=
∑

I(v) +
∑

I(f) . �

A label i which at a fat vertex lies immediately between oppositely oriented
edges of Γ(τ) is a switch label of τ . (Equivalently, i is a switch label if and only
if τ |(i − 1, i) and τ |(i, i + 1) have opposite signs.) If the edges of Γ(τ) adjacent
to i are oriented in a clockwise (resp. anticlockwise) direction around i, then i is
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a clockwise (resp. anticlockwise) switch label. Note that this is well-defined, i.e.,
independent of the sign of the fat vertex under consideration; see Figure 9.

Let C(τ), A(τ) ⊂ q be the set of clockwise and anticlockwise switch labels of τ ,
respectively.

As an example, for the type τ illustrated in Figure 9, C(τ) = {2, 4}, A(τ) =
{1, 3}.

An edge e of GP is a clockwise (resp. anticlockwise) switch edge if the labels at
the endpoints of e both belong to C(τ) (resp. A(τ)). A switch edge is an edge of
GP that is either a clockwise or an anticlockwise switch edge.

Note that the faces of Γ(τ) are in one-one correspondence with the edges of GP ,
and that under this correspondence, faces of Γ(τ) of index 1 correspond to switch
edges of GP . See Figure 11.

● 

● 

● 

● 

Figure 11

Now let τ be a non-trival q-type, and write c(τ) = |C(τ)|, a(τ) = |A(τ)|. Thus
c(τ) = a(τ) > 0.

If v is a fat vertex of Γ(τ), then

s(v) = ∆(c(τ) + a(τ)) = 2∆c(τ) .

Therefore

I(v) = 1 −
s(v)

2
= 1 − ∆c(τ) .

Assume that GP does not represent τ . Then by Proposition 5.2,
∑

v dual I(v) ≤
0. Therefore, by Lemma 5.3,

∑
I(f) ≥ χ(P̂ ) −

∑
v fatI(v) = χ(P̂ ) − p(1 − ∆c(τ)) .

Note that since c(τ) ≥ 1 and ∆ > 1 − χ(P̂ )/p by hypothesis, the last quantity
above is > 0.

By the remark above following the definition of a switch edge, the number of
switch edges of GP ≥

∑
I(f). Hence we may assume without loss of generality that

there are at least
∑

I(f)
2 clockwise switch edges, and so the number of endpoints of

clockwise switch edges ≥
∑

I(f) ≥ p∆c(τ) − (p − χ(P̂ )).
Now there are ∆c(τ) clockwise switch labels at each vertex of GP , giving a total

of p∆c(τ) such labels in GP , and so there are at most (p − χ(P̂ )) of these labels
that are not endpoints of clockwise switch edges of GP . Let Λ be the subgraph of
GQ consisting of those edges that correspond to clockwise switch edges of GP . (In
particular, the vertices of Λ correspond to a subset of C(τ).) As noted above, Λ is
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non-empty. Also, there are at most (p − χ(P̂ )) occurrences of labels at vertices of
Λ that are not endpoints of edges of Λ. Hence if

all elements of C(τ) have the same sign, (∗c)

and all elements of A(τ) have the same sign, (∗a)

then all the vertices of Λ have the same sign, and so (a connected component of) Λ

is a (p−χ(P̂ ))-web, as desired. (Note that we need to make both assumptions (∗c)

and (∗a), as we have no control over whether there are at least
∑

I(f)
2 clockwise or

anticlockwise switch edges.)
If at least one of (∗c) and (∗a) does not hold, then we take derived types until

both do hold, and then work backwards. We now briefly discuss this inductive
procedure.

For this, we have to work in the following more general setting. Consider a
non-empty set of labels L ⊂ q. Associated with L is the set of L-intervals, which
are the intervals (ℓ1, ℓ2) between successive elements of L. An L-type is defined in
the obvious way, to be an |L|-type where the ith co-ordinate is formally associated
with the ith L-interval.

Define G(L) to be the subgraph of GP consisting of all edges of GP with at least
one endpoint label belonging to L. Thus G(L) and GP have the same vertices, and
G(q) = GP .

Note that although the corners of the faces of G(L) are not necessarily L-
intervals, each is contained in a unique L-interval. Hence, for each disk face D
of G(L), by taking the algebraic sum of the L-intervals containing the corners of D
we get an element [D] ∈ Z|L|. Then, very much as before, we say that D represents
the L-type τ if and only if

(1) [D] represents τ (in the sense of Section 3); and
(2) (coherence condition) no L-interval occurs as the L-interval containing a

corner of D at two vertices of D of opposite sign.

We define the directed graph Γ(τ) as before (starting with G(L)), orienting each
edge according to the restriction of τ to the L-interval containing the corresponding
corner (and the sign of the fat vertex in question). Proposition 5.2 continues to
hold with GP replaced by G(L).

Let τ be a non-trivial L-type. We have C(τ), A(τ) ⊂ L, the set of clockwise
(resp. anticlockwise) switches of τ , as before. The argument we have just given
above carries over verbatim to our present more general setting, so we have the
following lemma.

Lemma 5.4. Let τ be a non-trivial L-type, satisfying (∗c) and (∗a), such that

G(L) does not represent τ . Then GQ contains a (p − χ(P̂ ))-web.

The derivative of a non-trivial L-type τ is the C(τ)-type dτ defined as follows.
Let (c, c′) be a C(τ)-interval. Then (c, c′) contains a unique element a ∈ A(τ). We
define dτ by

dτ |(c, c′) = sign a .
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Figure 12

Example. Taking q = 16 and starting with the q-type τ = +−+ +−+−−+−
+ + + −−+, Figure 12 below illustrates how one obtains dτ and d2τ .

The key property of the definition of the derivative of a type is the following
proposition, which says that to find a representative of τ it is enough to find a



18 C. MCA. GORDON

representative of dτ .

Proposition 5.5. Let τ be a non-trivial L-type. Then any face of G(C(τ)) repre-
senting dτ contains a face of G(L) representing τ .

Sketch Proof. We shall give enough of the proof to at least explain the reason for
the definition of dτ .

Let D be a face of G(C(τ)) representing dτ . Let ΓD(τ) = Γ(τ) ∩ D.

Claim. ΓD(τ) has either a face of index 1 or a dual vertex of index 1.

Proof of Claim. This is proved by doubling (D, ΓD(τ)) along the boundary, and
applying Lemma 5.3 to the double 2ΓD(τ) ⊂ 2D ∼= S2. Note that the faces of
2ΓD(τ) are the faces of ΓD(τ) (each appearing twice), together with a face fe for
each edge e ⊂ ∂D (with e ⊂ fe). Hence the conclusion will follow if we show that

|{fat vertices of 2ΓD(τ) of index 1}| ≤ |{faces fe of index −1}| .

But this in turn follows from the fact that, by definition of G(C(τ)), each e ⊂ ∂D
has at least one endpoint label ∈ C(τ) (see [GL2, p.398] for details).

A dual vertex of ΓD(τ) of index 1 will correspond to a face of G(L), contained
in D, representing τ . So, by the claim above, we are done once we show that no
face of ΓD(τ) has index 1. Such a face corresponds to a switch edge e of G(L).
Now e cannot be a clockwise switch edge, for such edges are edges of G(C(τ)),
and hence cannot lie in the interior of the face D of G(C(τ)). So assume that
e is an anticlockwise switch edge, with endpoint labels a1, a2 ∈ A(τ) at vertices
v1, v2 respectively; see Figure 13. Then, by the parity rule, (sign v1)(sign a1) 6=
(sign v2)(sign a2). But, recalling the definition of dτ , this contradicts the fact that
D represents dτ . �

● 

● 

v1 a1 v2 a2 

Figure 13

Returning to the proof of Theorem 5.1, suppose that one of the conditions
(∗c), (∗a) fails for the q-type τ . Note that C(τ) = A(−τ). Hence, if we define

τ0 =

{
τ , if τ does not satisfy (∗a)

−τ , if τ satisfies (∗a) but not (∗c),

then (∗a) fails for τ0. Hence dτ0 is a non-trivial type. If dτ0 satisfies (∗c) and (∗a),
stop. If not, define

τ1 =

{
dτ0 , if dτ0 does not satisfy (∗a)

−dτ0 , if dτ0 satisfies (∗a) but not (∗c)
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Continuing in this way, we obtain a sequence τ0, τ1, . . . , τn, n ≥ 1, where τ0 = ±τ ,
τi = ±dτi−1 is a non-trivial C(τi−1)-type, 1 ≤ i ≤ n, and τn satisfies (∗c) and (∗a).

If G(C(τn−1)) does not represent τn, then, by Lemma 5.4, GQ contains a (p −
χ(P̂ ))-web.

If G(C(τn−1)) does represent τn, then successive applications of Proposition 5.5
show that GP represents τ .

This completes our sketch of the proof of Theorem 5.1.

We have seen, in Section 4, that if GP represents all types then we get useful

topological information about (M(β), Q̂). What if GQ contains a (p − χ(P̂ ))-web?
One idea is that a web might give rise to Scharlemann cycles in GQ (which then

in turn give useful topological information about (M(α), P̂ )). In order to make
this work, however, we must impose a further condition. Namely, we define a great

k-web in GQ to be a k-web Λ which is contained in the interior of a disk DΛ ⊂ Q̂
with the property that any vertex of GQ lying in DΛ is a vertex of Λ. See Figure 14.

+ 
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+ + 

+ 

+ 

D Λ 

Figure 14

To guarantee that such objects exist, we need to specialize to the case where Q̂ is
a 2-sphere. It turns out that one can then prove the following theorem.

Theorem 5.6. Assume that ∆ > 1 − χ(P̂ )/p, and that Q̂ ∼= S2. Then either GP

represents all types or GQ contains a great (p − χ(P̂ ))-web.

The proof proceeds as follows. By Theorem 5.1, if GP does not represent all

types then GQ contains a (p−χ(P̂ ))-web Λ. Let U be a component of Q̂−nhd(Λ),

and let D be the disk Q̂ − U , containing Λ. If Λ is not a great web, then there
are vertices of GQ in D that are not vertices of Λ. These vertices correspond to
a non-empty subset L ⊂ q. One then proves by induction on |L| that either GQ

contains a great (p − χ(P̂ ))-web or G(L) represents all L-types. (The last step of
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the induction, which is the desired statement, is the degenerate case where Λ = ∅,
L = q, and D is a disk in Q̂ containing GQ.) This inductive argument is quite
subtle, and in particular involves relativizing the notion of the derivative of a type.

We refer to [GL3, proof of Theorem 2.5] (which does the case where P̂ is a torus),
and thence to [GL2, Section 2], for more details.

6. Applications

In this section we sketch the proofs of some results which use the methods we
have discussed. The first three are about Dehn surgery on knots in S3, and the
proofs of these will all be based on the following statement, which is an immediate
consequence of Theorem 5.6 and (Ta) of Section 4.

Theorem 6.1. Suppose that M(β) ∼= S3 and that Q̂ is a Heegaard 2-sphere. If

∆ > 1 − χ(P̂ )/p then GQ contains a great (p − χ(P̂ ))-web.

When M(β) ∼= S3, we shall make a slight change of notation, writing K for Kβ,
a non-trivial knot in S3, MK for M , the exterior of K, and µK for β, the meridian
of K.

The following theorem is proved in [GL2]. It implies that knots in S3 are deter-
mined by their complements.

Theorem 6.2. Let K be a non-trivial knot in S3. If MK(α) ∼= S3 then α = µK .

Proof. Suppose that MK(α) ∼= S3, with ∆(α, µK) ≥ 1. Let P̂ be a Heegaard
2-sphere in MK(α).

By Theorem 6.1, GQ contains a great (p− 2)-web, Λ. Hence there exists a label
(in fact at least two labels) i ∈ p such that every occurrence of i at a vertex of
Λ is the endpoint of an edge of Λ. Moreover, since all the vertices of Λ have the
same sign, no edge of Λ can have the same label at both endpoints, by the parity
rule. Hence, by always leaving a vertex of Λ along an edge of Λ with label i at that
vertex, we see that Λ contains an i-cycle, that is, a cycle of edges which can be
consistently oriented so that the tail of each edge has label i (and all the vertices
in the cycle have the same sign). See Figure 15.
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Now it is easy to see that a cycle of this kind which is innermost in the disk DΛ

(allowing the label i to be an arbitrary element of p) is a Scharlemann cycle in GQ.

Since P̂ is a 2-sphere the edges of this Scharlemann cycle necessarily lie in a disk in

P̂ . But since P̂ is a Heegaard 2-sphere, this is a contradiction, by (Sa) in Section 4
(here, the roles of P and Q are interchanged). �

Remark. We observed in the above proof that a great (p − 2)-web in GQ always
contains a Scharlemann cycle. So we may state

Theorem 6.3. If P̂ and Q̂ are 2-spheres, and ∆ ≥ 1, then either GP represents
all types or GQ contains a Scharlemann cycle.

If ∆ ≥ 2 then the following stronger conclusion holds.

Theorem 6.4. If P̂ and Q̂ are 2-spheres, and ∆ ≥ 2, then either GP or GQ

contains a Scharlemann cycle.

This is an immediate consequence of [CGLS, Proposition 2.5.6] (which deals with

the case where P̂ and Q̂ are disks).
Theorem 6.4 already shows that if M(α) ∼= M(β) ∼= S3 then ∆(α, β) ≤ 1, imply-

ing that there are at most two inequivalent knots with homeomorphic complements
(a fact first proved, by a different argument, in [CGLS]). However, there are exam-
ples of graphs GP , GQ with ∆ = 1 for which the conclusion of Theorem 6.4 fails,
illustrating the necessity of introducing the more general concept of representing
all types.

The next application addresses the question of when a reducible manifold can
be obtained by Dehn surgery on a knot in S3.

Theorem 6.5. Let K be a non-trivial knot in S3. If MK(α) is reducible then

(1) MK(α) has a lens space summand; and
(2) ∆(α, µK) = 1.

Part (1) was proved in [GL2]; part (2) was proved in [GL1] (by an argument
different from that outlined below).

Part (1) implies the Property R Conjecture, proved by Gabai [Ga2].

Corollary 6.6 (Gabai). If K is a non-trivial knot in S3 then MK(0) is irreducible.

Part (1) also implies

Corollary 6.7. Any homology 3-sphere obtained by Dehn surgery on a knot in S3

is prime.

We remark that Auckly, using results from gauge theory, has shown that there
are prime homology 3-spheres which cannot be obtained by Dehn surgery on any
knot in S3 [A].

The situation described in Theorem 6.5 can occur: if K is a torus knot or cable
knot then there is a slope α such that MK(α) is reducible. However, the Cabling
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Conjecture [GS] asserts that these are the only knots with this property. This is
still open.

Sketch Proof of Theorem 6.5. Here we take P̂ to be an essential 2-sphere in MK(α).
(Note that MK is irreducible.)

By Theorem 6.1, GQ contains a great (p − 2)-web Λ. As in the proof of Theo-
rem 6.2 above, this implies that GQ contains a Scharlemann cycle, and hence that
MK(α) has a lens space summand (see (Sc) in Section 4). This proves (1).

To prove (2), assume that ∆(α, µK) > 1. Then, for homological reasons, P̂
separates MK(α), and hence p is even.

If p = 2 then P is an annulus, and hence K is a cable of a knot K ′ (which
may be trivial). Now it is not hard to show (see the first four lines of the proof
of Theorem 3 in [GL1]) that if MK(α) is reducible for some α with ∆(α, µK) > 1
then MK′(α′) is reducible for some α′ with ∆(α′, µK′) > 1. Hence, by induction it
suffices to prove the result when K is not cabled.

So assume p ≥ 4. As in the proof of Theorem 6.2 above, there is a label in
p such that each of the ∆ occurrences of that label at each vertex of Λ is the
endpoint of an edge of Λ. One can then show, using the fact that ∆ ≥ 2, that Λ
contains Scharlemann cycles of GQ on distinct p-intervals (i, i + 1), (j, j + 1) (see
[GL4, Proof of Theorem 2.3]). This allows one to construct a new essential 2-sphere

P̂ ′ ⊂ MK(α) such that |P̂ ′ ∩ Kα| < p (see [GL4, Theorem 2.4]) contradicting the
minimality of p. �

For our last application to Dehn surgery on knots in S3 we consider the situation
where MK(α) contains an incompressible torus. Here, we must assume that MK

contains no essential torus, or equivalently, that K is not a satellite knot.

Theorem 6.8 [GL3]. Let K be a knot in S3 that is not a satellite knot. If MK(α)
contains an incompressible torus then ∆(α, µK) ≤ 2.

Examples with ∆(α, µK) = 2 have been constructed by Eudave-Muñoz [E2].
There are many examples with ∆(α, µK) = 1.

Sketch Proof of Theorem 6.8. Let P̂ be an incompressible torus in MK(α), and

assume (for a contradiction) that ∆(α, µK) ≥ 3. In particular, this implies that P̂
separates MK(α), so that p is even.

If p = 2 then one can show that the knot K is strongly invertible (see [GL3,
Section 8]) in which case the theorem is proved by Eudave-Muñoz [E1].

So assume that p ≥ 4. By Theorem 6.1, GQ contains a great p-web Λ. An easy
euler characteristic argument (see [GL3, Section 4]) shows that there are at least
four labels i ∈ p such that Λ contains an i-bigon; see Figure 16. Now such an i-
bigon is either a Scharlemann cycle, or contains within it an extended Scharlemann
cycle, that is, a Scharlemann cycle flanked by bigons; see Figure 17. However, a
topological argument shows that an extended Scharlemann cycle in GQ would give

rise to a new incompressible torus P̂ ′ in MK(α) with |P̂ ′ ∩ Kα| < p, contradicting
the minimality of p (see [GL3, Theorem 3.2]). We conclude that Λ contains two
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Scharlemann cycles D, D′ of length 2 on disjoint p-intervals (i, i+1) and (i′, i′ +1).

By (Sb) in Section 4, the edges of neither D nor D′ lie in a disk in P̂ , hence each

pair of edges forms an essential loop on P̂ ; see Figure 18. Shrinking the 1-handle
H(i,i+1) to its core has the effect of gluing together the two (i, i + 1) corners of D
(see Figure 19), giving a Möbius band B. Similarly, D′ gives rise to a Möbius band

B′. Since ∂B and ∂B′ are parallel on P̂ we may join B and B′ by an annulus

in P̂ to get a Klein bottle F in MK(α). We now replace the torus P̂ by the

boundary P̂0 of a regular neighborhood of F . (Note that P̂0 is incompressible,
since MK(α) contains an incompressible torus by hypothesis, and is irreducible by
Theorem 6.5(2).) But similar combinatorial arguments, applied to P0 ∩ Q, in this
case lead to a contradiction (see [GL3, Section 6]). �
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Finally, we show how the methods we have discussed give some information about
the question of when M(α) and M(β) are reducible. Let us say that a 3-manifold
is Q-reducible if it contains a Q-essential 2-sphere.

Theorem 6.9. (i) If M(α) and M(β) are Q-reducible then α = β.
(ii) If M(α) is reducible and M(β) is Q-reducible, with α 6= β, then M(α) has

a lens space summand.
(iii) If M(α) and M(β) are reducible, with α 6= β, then either both M(α) and

M(β) have summands Mα, Mβ with H1(Mα) and H1(Mβ) finite and non-
zero, or one of M(α), M(β) has a lens space summand.

Remarks. (1) Part (i) is a special case of a result of Scharlemann [S3] proved using
the theory of sutured manifolds. The case where M(α) and M(β) are connected
sums of copies of S1 × S2 was proved by Gabai [Ga1].

(2) Scharlemann [S3] proves that under the hypotheses of (ii), M(β) ∼= S1 ×
S2 # W , and M(α) ∼= W ′ # W ′′, where W, W ′ and W ′′ are Q-homology spheres,
and that either W ′ is a lens space or H1(W ) 6= 0.

(3) It is shown in [GL4], by an elaboration of the methods discussed here, that if
M(α) and M(β) are reducible then ∆(α, β) ≤ 1. A different proof has been given
by Boyer and Zhang [BZ].

Proof of Theorem 6.9. (i) Let P̂ , Q̂ be Q-essential 2-spheres in M(α), M(β) respec-
tively with p and q minimal. By Theorem 6.3, either GP represents all types or
GQ contains a Scharlemann cycle. But the first contradicts the minimality of q (see
(Td) in Section 4), while the second contradicts the minimality of p (see (Sd) in
Section 4).

(ii) Let Q̂ be as in (i), and let P̂ be an essential 2-sphere in M(α). By Theo-
rem 6.3 (and (Td)) GQ contains a Scharlemann cycle. Hence M(α) has a lens space
summand.

(iii) Let P̂ , Q̂ be essential 2-spheres in M(α), M(β) respectively. The result then
follows from Theorem 6.3, applied as stated and also with P and Q interchanged,
(together with (Sc) and (Tc) in Section 4). �
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